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ABSTRACT:  The theory of differential games is explored in relation to 

two-player pursuit games. An examination of models based on games of 

degree is compared with models based on games of kind with consideration 

to maneuvering strategies. An unconstrained two-dimensional space is used 

as the playing surface. The model for a simple single, continuous turn is 

considered along with the formation of a strategy based on a series of simple 

continuous turns. Energy considerations are used for terminating conditions. 

An exploration of state and control variables for games of degree and games 

of kind is performed, with the basis for a game of degree showing greater 

promise for expansion of this model to n dimensions with applied 

probability modeling. 

 

1. Introduction: Differential games (DG) theory was born in the 1960’s primarily for 

applications regarding combat situations [1]. Isaacs pioneered this field of research as an 

alternate means by which combat scenarios could be formulated. Indeed, much of DG 

theory evolves directly from the older discrete games theory (GT). Typically the process of 

DG modeling involves a “smoothing” of the game to fit continuous models rather than 

discrete ones. Similarly, many differential games can be modeled by GT. It is apparent that 

the sequences of some types of games (i.e. American football) could be sufficiently 

modeled by either. 

 The concept of statistical decisions is an extension of decision theory, the latter of 

which came into prominence in the 1920’s [2]. Given statistical measures of the next turn 

in a game, decisions regarding an optimizing strategy can be met. This paper does not 

provide much more than a qualitative analysis on the mathematics of statistical decision 

theory, but it easily noticeable that the fundamental principles for statistical decision theory 

apply conveniently to a stochastic simulation for DG theory. 

 A classic DG is considered here, and it was largely formed from a modification to 

the classic “homicidal chauffeur” game posed in [1]. The initial motivation for the project 

was to model aerial combat between dissimilar aircraft in three-dimensional space. 

However, the game for combat between aircraft is rather messy, as pointed out by 

Aboufadel in [3]. Therefore, the decision to limit the scope to two dimensions was made, 

with the underlying motivation then transforming into a model for pursuit of a cheetah and 

an antelope. Lacking the zoological knowledge of cheetah hunting methods, and given the 

fact that not many antelopes can perform calculus while running for their lives, a more 
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realistic example of a car chase on an open parking lot may be considered if the reader 

finds the former example too far a stretch of the imagination.  

 

2. One-Player Differential Games: A one-player DG serves as a good approximation for 

a race car driver in an autocross. An autocross is a form of race where a driver is timed as 

he or she races through a complex course involving sharp turns, slaloms, and straight-

aways. Therefore, this turns into a one-player DG of degree, where the payoff is considered 

to be the time to completion of the course, t. Let us be an observer to this game with a 

wager on the time to completion for each certain driver. We can therefore write a general 

DG in terms of state and control variables as follows: 
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Where x1 and x2 are the x- and y-coordinates of the vehicle, respectively. It follows that: 
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Here, A represents the maximum possible acceleration of the vehicle, W represents the 

maximum rate of change of the angle of turn, and φ1 and φ2 represent control variables for 

A and W, respectively. Thus, it is apparent that: 
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This gives a complete description of what the car is doing as far as the driver is concerned, 

but as observers it might be important to add another state variable, x5, to the game to 

denote the direction the vehicle is facing. We can then write the game in terms of kinematic 

equations (KE): 
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The full derivation of this, as with additional assumptions not considered here, is detailed 

in p.6 of Isaacs [1]. However, one critical assumption that will be thrown out in the above 

derivation is that this vehicle has no transmission. Indeed, one who drives a vehicle with a 

manual transmission knows that there are more ways to accelerate than simply hitting the 

accelerator. For the purposes of a qualitative analysis of applied statistical decision theory, 

we will examine what would occur should this not be the case. 

 It might be apparent that the driver of this car (which we assume to have some sort 

of transmission system) can accelerate the vehicle in any of four available gears. We can 

then say: 

SA
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where AX denotes the maximum possible acceleration in gear X. Since: 

1)( =SAP , 
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we can write that: 
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If we look further, we could say that the driver will not attempt to accelerate the vehicle in 

3rd or 4th gear since higher gears accelerate more slowly, and consequently p3=p4=0. 

Furthermore, say we can reduce the range of the driver’s control variable such that: 

18.0 1   

Then we can map two subspaces G1 and G2 in the playing space G where the driver is likely 

to be after a given time t. 

 
Figure 1 

Thus, if we knew this sort of information ahead of time, we could place a wager on the car 

being in G1 or G2 with probability p1 or p2, respectively. This is an application of the 

underlying theory involving statistical decision theory, and this qualitative analysis will be 

as far as we go with applying probability to the DG models in this paper. Further 

applications of statistical decision theory in relation to GT is discussed in depth in the 

Blackford text [2]. 

 

3. Time Distances: In terms of the KE’s of the DG at hand, it is very inconvenient to write 

the state variables in terms of long, complex equations for the motion of a player. Thus, it 

is useful to decompose the physical problem into terms of a “time distance,” or rather the 

amount of time it would take for a player to get to a given point on the playing surface 

given certain speed and acceleration characteristics. Then if the game were to arrive at a 
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certain point P on a playing surface, the payoff would be the total time T and the 

terminating condition would be when the time distance Δt=0. For the two-player pursuit 

game, that arbitrary point becomes the evader E which may or may not move, and the 

player attempting to get to E is the pursuer, P. We will no longer use P to denote 

probability, as our discussion involving that aspect of GT is complete. We will later discuss 

the use of these time distances to denote the total difference between E and P at a given 

time in the game as state variables, and the time distances will be broken into components 

corresponding to the x- and y-coordinates. We will also see how this decomposition 

becomes useful in determining a turn strategy. 

 

4. Energy Relations, Player Conditions, and Terminating Conditions: In order to 

properly model the two-player game, as we did with the one-player game, it is important to 

consider the conditions by which the players’ motion is governed over a period of time and 

the terminating conditions of the game. In this game, we will consider two terminating 

conditions: one, where P captures E, and two, where P does not have enough energy to 

close the time distance to E. Therefore, we need to give some though to the energy 

relations that we have. Consider: 
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at maximum speed. Thus, to run at maximum speed to counter friction and drag (denoted 

by D), the animal (or car) must apply full acceleration. It then becomes sufficient to write 

the energy relation in terms of this acceleration term: 
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where d is the displacement. Continuing: 
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Replacing d by d* to remove a potential confusion, we take the limit as Δt goes to zero. 
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From basic physics we know: 
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Plugging this term into (1) we can see that: 
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This may also be confirmed dimensionally. We will use (2) as the governing equation for 

the terminating condition. We will also make a few assumptions about the players 

themselves. Assume that P is faster than E, that is to say: 

EP AA   

Then we can see that it uses up its energy faster. Also assume that P and E have some finite 

initial energies. To avoid confusion, we will refer to energy as M from here forth. 

Therefore, P and E have initial energies MPo and MEo. There is no definite inequality 

between these. It may be that MPo>MEo, but for the purposes of this game we will state that 

if such is the case, then MPo>>MEo cannot be the case, otherwise it is almost certain that P 

will capture E simply by wearing it into the ground. (An interesting aside in relation to the 

military nature of the Isaacs text, if the latter were the case and we took M to be the 

munitions reserve of an army, this would be the case of a war of attrition where one army 

simply has more ammo (or men) to expend on its opponent.) The assumption will also be 

made that the energy remaining has no impact on the speeds at which the players can move, 

similar to a car with a fuel tank. 

 

5. One-Dimensional, Two-Player Differential Games of Pursuit: Admittedly there is no 

real challenge or interest in a two-player DG of pursuit that follows only one dimension, 

but it forms a necessary basis for more complex games. Consider E and P to be on a one-

dimensional playing surface with a given initial time distance δt: 

 
Figure 2 

Given the situation in Figure 2a we can determine whether the situation in Figure 2b is 

possible. A transformation to a one-player game is performed: 

EP AAA −=)( 1  

Plugging this, and t=T into (2) will yield a depletion in energy for P, which can then be 

subtracted from MPo. If the resultant value is negative, we then know that P cannot capture 
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E. The matter of finding T is trivial; simply use basic physical laws to solve for the distance 

traveled by each P and E and calculate the intercept point. 

 However, if plugging the time T into a transformed equation for P does not yield a 

capture for E, the game is not necessarily over. We must check if E also had enough energy 

to run that given distance. If so, then the game has been won in E’s favor. If not, then it is 

necessary to perform some tedious calculations to see where E runs out of energy. If this is 

greater than the time at which P runs out of energy, then the game is also won in E’s favor. 

If not, then the scenario arises where E has run out of energy and is “dead in the water” and 

can merely sit and wait for P to capture and win the game in P’s favor. 

 Assume that this last scenario is in fact possible. We may wish to optimize E’s 

motion to use as little energy as possible. Thus, for an initial time t1 E does not run at φ1=1 

as in the previous example. 

 
Figure 3 

In Figure 3a the situation is the same as in Figure 2a, but E is not running at full speed. 

Instead it is conserving energy until P has gotten closer and lost some of its energy. Then, 

when we arrive at Figure 3b, E runs at full speed. Thus, we can consider the stage from (b) 

to (c) as the same scenario as Figure 2, and we can use the same methods. However, it is 

important that we subtract the energy spent from going from (a) to (b) in Figure 3 from the 

initial energies that E and P had, namely MPo and MEo. 

 While this situation serves little practical purpose, the concepts of discretizing the 

DG into stages, and the subsequent superposition of these decomposed stages into a full 

DG is fundamental to the turning concepts that will be discussed in the next section. 

However, before turning to a full two-dimensional model, a few comments on the decisions 

made in the second portion of this one-dimensional system are worth making. Here we see 

the choice of a minimizing strategy by E. It is common in GT for one player to attempt to 

minimize the chances of the other player to win. This other player consequently attempts to 

maximize its chances of winning. This is known as a minimax problem [2]. In a normalized 
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discrete game, it is not apparent who is minimizing and who is maximizing from the onset. 

Instead, it changes each turn depending on the conditions of the game (one who has played 

the popular game Risk understands the dynamic nature of minimizing and maximizing 

strategies for each player). However, in DG’s of pursuit it stands constant that E is 

minimizing and P is maximizing [1]. This is (somewhat confusingly) converse to the actual 

goals in terms of our DG, where E minimizes by maximizing the time distance and P does 

the exact opposite. In DG theory it is not always clear due to the continuous nature of the 

game who performs the driving strategy. However, in our unconstrained pursuit model, P 

has no way to set a trap for E as if there were some forms of constrictions on the playing 

surface. Thus, we will hereby state that E determines the driving strategy which P must 

follow. 

 

6. Two-Player Pursuit Games with Turning: It is more interesting to consider the 

scenario regarding a turn by E with P in pursuit. It stands to reason, barring any physical 

considerations such as friction, that the faster animal has a larger turning radius. We will 

offer the problem first graphically then mathematically. Consider the case in Figure 2 or 

Figure 3 (we have already shown that by superposition the latter can be transformed into 

the former). Now superpose a turn by E on the playing field. We will neglect any reaction 

by P to this turn. 

 
Figure 4 

In Figure 4 we see a simple continuous turn. In Figure 4a, E has turned by a specified angle 

θ1 and P has turned by θ2 (angles not shown for clarity.) We will show that θ1>θ2: 
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So at the instant that E has gone the desired angle 1 , P has only gone an angle of 2 . If E 

continues straight at this point, then P will lose some ground on E by necessity of 

completing the full angle 1 . 

 At Figure 4b, P has gone the required angle to be parallel with E. In the figure 

below (Figure 5) a very interesting scenario is at hand. 

 
Figure 5 

Given the above considerations of decomposing the game into discrete steps and 

recombining them to form a full DG, we know that at this phase we can almost consider 

this the same scenario as in section 5. However, there is a critical difference: the distance ty. 

If we define a manifold in the DG sense to mean an n-1-dimensional surface in the 

Euclidean n-space that is the playing field, we can see that E and P are no longer on the 

same manifold. This means that P will have to adjust to get back onto the same manifold as 

E. To do so, P must perform a turn that is exactly Δθ greater than θ1. This means that if E 

were to turn again to its left, then it would lose exactly Δθ on the turning angle to P but 

gain ty in time distance. This scenario may lead to a terminal scenario in favor of P. On the 

other hand, however, if E turns to the right then it gains Δθ in angle, but loses ty in time 

distance. This is where the concept of a turning strategy enters the game. 

 There is no definite relationship to define which is the better turn. Clearly if E 

makes a second turn with an angle less that Δθ in either direction then it has lost time 

distance on P. Instead, the relationship between the turning radii will be the determining 

factor for the strategy. If it is such that larger angles of turn cause the difference ty to grow 

every time, then an alternating turn strategy (left-right-left-right) may be the best choice. If 

tx 
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however, the loss of the angle is negligible, then clearly a continual turn strategy is optimal. 

We will continue with a more mathematical approach to the problem: 
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So as θ1 is small, tx is small as well. 

 If we plug the relationships for R and r into (3) we can conclude that if the speed of 

P is much larger than the speed of E, then correspondingly their difference between R and r 

is large as long as WE and WP are close. Similarly, if WP is small (corresponding to a slow 

rate of turn) then R is again much larger than r. However, we can see a better relationship 

to determine a strategy for turning. The sin term is bounded on the closed interval [-1,1]. 

Therefore, the driving term in the system is R-r. Thus, regardless of the relationship of turn 

radii, E cannot gain a significant time distance by alternating turns. 

 Before continuing on to write the DG completely in terms of its KE’s, it is worth 

reinforcing the superposition principle regarding turn strategies. At the end of each turn, the 

game essentially can be started over with the new initial conditions being the new 

coordinates after the turn, and the new total energy left after the previous maneuver. In this 

manner a full DG can be written as several smaller DG’s. 

 

7. Full Kinematic Equations for the Pursuit Game with Simple Turns: It suffices now 

to write the DG in terms of its KE’s. Before blindly stating them, however, we have 

discussed nothing of the differences between modeling this game as a game of kind or as a 

game of degree. In a game of kind there are a finite number of outcomes. In this example, 

the payoff is either capture or evasion. In a game of degree, the payoff is continuous [2]. 

Here, this would represent the amount of time by which E evades, with zero representing 

capture. Since we already need to keep track of key components such as energy and time 

distance, we may consider these to be state variables. Thus, define x6 to be energy, and x7 

and x8 to be the x- and y-components of time distance. We therefore add the following to 

the state variables as discussed in section 2: 
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 Upon expanding x7 and x8 with the functions derived earlier for R and r, and 

introducing the term θ1= θφ3 since θ1 is of E’s choosing, we have: 
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But suppose we go one step further and say that the control variables are some unknown 

functions of time. We can then write the complete KE’s for the entire game as follows: 
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These equations then represent the DG for pursuit for continuous turns. As previously 

mentioned, since we can decompose a game into smaller games, we can use these 

equations for a game with any amount of turns of any radii. If a more complex turn is to be 

considered, say with a non-constant radius, then two options exist: define φ2 as changing 

with t, or decompose the game into two smaller games at the point where the radii change. 

If the latter method is chosen, it is important to retain smoothness between the curves. 

However, these equations will only work for circular turns; other types of turns will require 

slight modifications. 

 The basis is now laid for an extension to three dimensions. From the appearance of 

the last two KE’s, it is clear that many avoid this procedure and instead model three-

dimensional processes with two-dimensional ones. Notwithstanding, symbolic 

manipulation programs nowadays have sufficient capability to perform some of the tedious 

operations automatically, and an extension of this project to three-dimensions is a possible 

avenue of future research. Alternatively, this model could be extended while remaining in 

two dimensions by adding constraints to the playing surface. This model also lacked some 

physical constraints such as a maximum speed and friction between the playing surface and 

the player, which could easily be added to this system. Furthermore, this model could be 

used as an exercise in statistical decision theory, and the probability subspaces could be 

mapped onto the playing space as was done in section 2. Lastly, this is a setup for a 

stochastic simulation of complex physical processes that may be modeled using differential 

games. While there is ample discussion on GT and statistical decision theory, there is 

relatively little research on DG as a separate branch of GT, and even less on statistical 

decision theory as applied to DG. 

 If one were to apply statistical decision theory to a DG of this sort on a constrained 

playing field, some assumptions that are valid in this unconstrained field will not hold true. 

While it is true that a DG can be decomposed into discrete steps, optimizing a minimax 

problem cannot. If one were to introduce a wall in the playing surface, then it stands to 

reason that E may be beneficial to make a turn in one direction at one point, but this may 

only be a setup for a trap by P. Thus, the optimization of a strategy is a topic not considered 

in this paper, but discussed in some detail in [1] and [2], the latter as applicable to GT. 

However, such problems were not the objective of this paper; instead, merely providing a 

basis upon which to start was the intent. To this extent I feel that it has succeeded. 
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